Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds

Author:

Liu Lupeng,Xiao JunORCID,Wang Ying

Abstract

In the fields of 3D modeling, analysis of discontinuities and engineering calculation, surface extraction is of great importance. The rapid development of photogrammetry and Light Detection and Ranging (LiDAR) technology facilitates the study of surface extraction. Automatic extraction of rock surfaces from 3D rock-mass point clouds also becomes the basis of 3D modeling and engineering calculation of rock mass. This paper presents an automated and effective method for extracting rock surfaces from unorganized rock-mass point clouds. This method consists of three stages: (i) clustering based on voxels; (ii) estimating major orientations based on Gaussian Kernel and (iii) rock surface extraction. Firstly, the two-level spatial grid is used for fast voxelization and segmenting the point cloud into three types of voxels, including coplanar, non-coplanar and sparse voxels. Secondly, the coplanar voxels, rather than the scattered points, are employed to estimate major orientations by using a bivariate Gaussian Kernel. Finally, the seed voxels are selected on the basis of major orientations and the region growing method based on voxels is applied to extract rock surfaces, resulting in sets of surface clusters. The sub-surfaces of each cluster are coplanar or parallel. In this paper, artificial icosahedron point cloud and natural rock-mass point clouds are used for testing the proposed method, respectively. The experimental results show that, the proposed method can effectively and accurately extract rock surfaces in unorganized rock-mass point clouds.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Key Research Program of Frontier Sciences CAS

Beijing Nova Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3