Abstract
This research experimentally analyzed the impacts of various water cement (W/C) ratios of ultrafine cement grout material and normal loads FN applied to fractures on grout nonlinear flow behavior through a rough plexiglass fractured sample. An effective self-made apparatus was designed and manufactured to conduct the stress-dependent grout flow tests on the plexiglass sample containing rough fractures. At each W/C ratio, the grout pressure P increased from 0 to 0.9 MPa, and the normal loads FN ranged from 666.3 to 1467.8 N. The results of the experiments indicate that (1) the Forchheimer’s law can be used to express the results of grout nonlinear flow through rough fractures. Moreover, both nonlinear coefficient a and linear coefficient b in Forchheimer’s law decreased with the increase of the W/C ratio, but increased with the increase of the FN value. (2) For normalized transmissivity, with the increase of Re, the decline of the T/T0–Re curves means that the grout flow behavior through the fracture mainly went through three stages: the viscosity effect, then the weak inertia effect, and finally the strong inertia effect. The three stages showed that with the increase of Re, the grout flow state changed from linear to nonlinear. Moreover, with the increase of the W/C ratio, the Forchheimer coefficient β decreased. (3) At a given FN, the critical grout hydraulic gradient Jc decreased, but the critical Reynolds number Rec increased as the W/C ratio increased; at a given W/C ratio, Jc increased, but Rec decreased as FN increased.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献