Overall Adaptive Controller Design of PMSG Under Whole Wind Speed Range: A Perturbation Compensation Based Approach

Author:

Chen Jian,Duan Wenyong,Yang Xiaodong,Zhang Lanhong,Shan Yi,Yang Bo,Shu Hongchun,An Na,Yu TaoORCID

Abstract

This paper proposes an adaptive overall control strategy of the permanent magnet synchronous generator-based wind energy conversion system (WECS) in the whole wind speed range. For the machine side, the maximum power point tracking (MPPT) operation is realized by stator current and mechanical rotation speed control under below-rated wind speeds. Under above-rated wind speeds, the extracted wind power is limited via pitch control. For the grid side, the reactive and active power injected into grid is regulated by DC-Link voltage and grid current control loop. In addition, under grid voltage dips, the pitch control is employed for limiting grid current and maintaining the DC-Link voltage around its rated value. The fault ride-through capability (FRTC) can be enhanced. The overall control strategy is based on perturbation estimation technique. A designed observer is used for estimating the perturbation term including all system nonlinearities, uncertainties and disturbances, so as to compensate the real perturbation. Then, an adaptive control for the original nonlinear system can be realized. The effectiveness of the proposed overall control strategy is verified by applying the strategy to a 2-MW WECS in MATLAB/Simulink. The results show that, compared with the feedback linearizing control (FLC) strategy and conventional vector control (VC) strategy, the proposed perturbation observer based adaptive control (PO-AC) strategy realizes the control objectives without knowing full state information and accurate system model, and improves the robustness of the WECS parameter uncertainties and FRTC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3