Identification of High-Priority Tributaries for Water Quality Management in Nakdong River Using Neural Networks and Grade Classification

Author:

Jung Kang-Young,Cho Sohyun,Hwang Seong-YunORCID,Lee Yeongjae,Kim KyunghyunORCID,Na Eun HyeORCID

Abstract

To determine the high-priority tributaries that require water quality improvement in the Nakdong River, which is an important drinking water resource for southeastern Korea, data collected at 28 tributaries between 2013 and 2017 were analyzed. To analyze the water quality characteristics of the tributary streams, principal component analysis and factor analysis were performed. COD (chemical oxygen demand), TOC (total organic carbon), TP (total phosphorus), SS (suspended solids), and BOD (biochemical oxygen demand) were classified as the primary factors. In the self-organizing maps analysis using the unsupervised learning neural network model, the first factor showed a highly relevant pattern. To perform the grade classification, 11 parameters were selected. Six parameters are concentrations of the main parameters for the water quality standard assessment in South Korea. We added the pollution load densities for the selected five primary factors. Joochungang showed the highest pollution load density despite its small watershed area. According to the results of the grade classification method, Joochungang, Topyeongcheon, Hwapocheon, Chacheon, Gwangyeocheon, and Geumhogang were selected as tributaries requiring high-priority water quality management measures. From this study, it was concluded that neural network models and grade classification methods could be utilized to identify the high-priority tributaries for more directed and effective water quality management.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3