Abstract
Manual traffic surveillance can be a daunting task as Traffic Management Centers operate a myriad of cameras installed over a network. Injecting some level of automation could help lighten the workload of human operators performing manual surveillance and facilitate making proactive decisions which would reduce the impact of incidents and recurring congestion on roadways. This article presents a novel approach to automatically monitor real time traffic footage using deep convolutional neural networks and a stand-alone graphical user interface. The authors describe the results of research received in the process of developing models that serve as an integrated framework for an artificial intelligence enabled traffic monitoring system. The proposed system deploys several state-of-the-art deep learning algorithms to automate different traffic monitoring needs. Taking advantage of a large database of annotated video surveillance data, deep learning-based models are trained to detect queues, track stationary vehicles, and tabulate vehicle counts. A pixel-level segmentation approach is applied to detect traffic queues and predict severity. Real-time object detection algorithms coupled with different tracking systems are deployed to automatically detect stranded vehicles as well as perform vehicular counts. At each stage of development, interesting experimental results are presented to demonstrate the effectiveness of the proposed system. Overall, the results demonstrate that the proposed framework performs satisfactorily under varied conditions without being immensely impacted by environmental hazards such as blurry camera views, low illumination, rain, or snow.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference47 articles.
1. An alternative technique for the computation of the designator in the retinex theory of color vision.
2. Single image haze removal using dark channel prior;He;IEEE Trans. pattern Anal. Mach. Intell.,2010
3. Video Demonstration of a GUI based AI Enabled Traffic Monitoring Systemhttps://github.com/titanmu/aienabled
4. A Deep Convolutional Network for Traffic Congestion Classificationhttps://dais-ita.org/sites/default/files/nato_ist_trafficCongestion_Paper4_Issue1.pdf
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献