Effect of Deformation Temperature on the Mechanical Behavior and Stability of Retained Austenite in TRIP-Assisted Medium-C Multiphase Steel

Author:

Skowronek Adam,Grajcar AdamORCID

Abstract

The temperature-dependent microstructural evolution and corresponding mechanical stability of retained austenite in medium-C TRIP-assisted 0.43C-1.45Mn-0.98Si-1Al-0.033Nb-0.01Ti steel obtained by thermomechanical processing was investigated using static tensile tests and microstructural studies. The light microscopy, image analysis, XRD diffraction and the Jaoul–Crussard analysis were applied to reveal relationships between microstructure and mechanical properties. Specimens were deformed in the static tensile tests in a temperature range of −20–140 °C. It was found that an increase in deformation temperature resulted in the reduced intensity of the TRIP effect due to the higher stability of retained austenite. An increase in the retained austenite stability along with a smaller grain size and a change from its blocky morphology to thin layers was also indicated. The impact of strengthening mechanisms at different temperatures was analyzed. The best combination of strength and ductility was obtained in the samples deformed at 20 and 60 °C, which is associated with the moderate work hardening in this temperature range. The Jaoul–Crussard analysis showed much less strengthening during the second phase of deformation at 100 and 140 °C due to the high stability of retained austenite. The higher C content in the investigated TRIP steel resulted in substantial volume fractions of retained austenite stable after completing deformation.

Publisher

MDPI AG

Subject

General Materials Science

Reference60 articles.

1. Advanced high-strength steels: Microstructure and texture evolution;Roumen,2016

2. Elaboration of forging conditions on the basis of the precipitation analysis of MX-type phases in microalloyed steels

3. Influence of Nb Microaddition on a Microstructure of Low-Alloyed Steels with Increased Manganese Content

4. Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel.

5. Microstructural comparison of the thermomechanically treated and colddeformed nb-microalloyed TRIP steel;Grajcar;Mater. Technol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3