Effect of Heat Treatment on Gradient Microstructure of AlSi10Mg Lattice Structure Manufactured by Laser Powder Bed Fusion

Author:

Liu Mulin,Takata NaokiORCID,Suzuki Asuka,Kobashi Makoto

Abstract

The present study addressed the effect of heat treatment process on microstructure of an AlSi10Mg lattice structure with a body-centered cubic unit cell manufactured via laser powder bed fusion (LPBF). The as-manufactured lattice specimen exhibited a unique cellular structure composing of primary α-Al phases bounded by α-Al/Si eutectic microstructure. A gradient microstructure (continuous microstructural changes) was found in the node and strut portions composed of the lattice specimen. The microstructure appears more equiaxed and coarser with approaching the bottom surface of both portions. The continuous microstructural changes contributed to a variation in hardness measured at different locations in the as-manufactured lattice specimen. Si particles finely precipitate in the primary α-Al phases, and eutectic Si particle coarsening occurs at an elevated temperature of 300 °C. The microstructural coarsening is more pronounced at a higher temperature. A number of significantly coarsened Si particles and a stable Fe-containing intermetallic phase (β-AlFeSi) were observed at all locations in 530 °C solution-treated specimen. The homogenous microstructure results in a constant hardness value independent of the location in the lattice specimen. These results provide new insights to control the compressive properties of the AlSi10Mg lattice structure manufactured via LPBF by subsequent heat treatment processes.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3