Effect of Processing Route on Microstructure and Mechanical Properties in Single-Roll Angular-Rolling

Author:

Lee Hak Hyeon,Hwang Kyo Jun,Park Hyung Keun,Kim Hyoung SeopORCID

Abstract

This paper reports the effect of the processing route on the microstructure and mechanical properties in the pure copper sheets processed by single-roll angular-rolling (SRAR). The SRAR process was repeated up to six passes in two processing routes, called routes A and C in equal-channel angular pressing. As the number of passes increased, the heterogeneous evolution of hardness and microstructural heterogeneities between the core and surface regions gradually became intensified in both processing routes. In particular, route A exhibited more prominent partial grain refinement and dislocation localization on the core region than route C. The finite element analysis revealed that the intense microstructural heterogeneities observed in route A were attributed to effective shear strain partitioning between the core and surface regions by the absence of redundant strain. On the other hand, route C induced reverse shearing and cancellation of shear strain over the entire thickness, leading to weak shear strain partitioning and delayed grain refinement. Ultimately, this work suggests that route A is the preferred option to manufacture reverse gradient structures in that the degree of shear strain partitioning and microstructural heterogeneity between the core and surface regions is more efficiently intensified with increasing the number of passes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3