EMD-Based Energy Spectrum Entropy Distribution Signal Detection Methods for Marine Mammal Vocalizations

Author:

Wen Chai-Sheng1,Lin Chin-Feng1,Chang Shun-Hsyung2

Affiliation:

1. Department of Electrical Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

2. Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan

Abstract

To develop a passive acoustic monitoring system for diversity detection and thereby adapt to the challenges of a complex marine environment, this study harnesses the advantages of empirical mode decomposition in analyzing nonstationary signals and introduces energy characteristics analysis and entropy of information theory to detect marine mammal vocalizations. The proposed detection algorithm has five main steps: sampling, energy characteristics analysis, marginal frequency distribution, feature extraction, and detection, which involve four signal feature extraction and analysis algorithms: energy ratio distribution (ERD), energy spectrum distribution (ESD), energy spectrum entropy distribution (ESED), and concentrated energy spectrum entropy distribution (CESED). In an experiment on 500 sampled signals (blue whale vocalizations), in the competent intrinsic mode function (IMF2) signal feature extraction function distribution of ERD, ESD, ESED, and CESED, the areas under the curves (AUCs) of the receiver operating characteristic (ROC) curves were 0.4621, 0.6162, 0.3894, and 0.8979, respectively; the Accuracy scores were 49.90%, 60.40%, 47.50%, and 80.84%, respectively; the Precision scores were 31.19%, 44.89%, 29.44%, and 68.20%, respectively; the Recall scores were 42.83%, 57.71%, 36.00%, and 84.57%, respectively; and the F1 scores were 37.41%, 50.50%, 32.39%, and 75.51%, respectively, based on the threshold of the optimal estimated results. It is clear that the CESED detector outperforms the other three detectors in signal detection and achieves efficient sound detection of marine mammals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Whitlow, W.L.A., and Marc, O.L. (2016). Listening in the Ocean: New Discoveries and Insights on Marine Life from Autonomous Passive Acoustic Recorders, Springer.

2. Brekhovskikh, L.M., and Lysanov, Y.P. (2001). Fundamentals of Ocean Acoustics, Springer. [3rd ed.].

3. Review of automatic detection and classification techniques for cetacean vocalization;Usman;IEEE Access,2020

4. Bittle, M., and Duncan, A. (2013, January 17–20). A review of current marine mammal detection and classification algorithms for use in automated passive acoustic monitoring. Proceedings of the Acoustics, Victor Harbor, Australia.

5. Zimmer, W.M.X. (2011). Passive Acoustics Monitoring of Cetaceans, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3