Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT

Author:

Rabezanahary Tanteliniaina Mirindra Finaritra,Rahaman Md. HasiburORCID,Zhai Jun

Abstract

The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 > 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

1. Potential Impacts of Projected Climate Change under CMIP5 RCP Scenarios on Streamflow in the Wabash River Basin

2. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

3. Projected Change in Temperature and Precipitation Over Africa from CMIP6

4. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

5. Africa in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Niang,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3