Prediction Method of Beijing Electric-Energy Substitution Potential Based on a Grid-Search Support Vector Machine

Author:

Chi Yuanying,Zhang Yangyi,Li Guozheng,Yuan Yongke

Abstract

Recently, “power cuts” and “coal price surges” have been significant concerns of individuals and societies. The main reasons for a power cut are a recent rapid increase in power consumption, shortage of thermal coal or the large shutdown capacity of thermal power units, resulting in a tight power supply in the power grid. In recent years, the shortage of fossil resources has led to frequent energy crises. In the context of carbon peaks and carbon neutralization, how to better develop electric-energy substitution and eliminate the dependence on fossil energy has become a problem that needs to be solved at present. In this paper, the influencing factors of electric-energy substitution in Beijing are analyzed, and the indexes affecting the electric-energy substitution are outlined. By constructing various machine-learning models, the prediction is performed. The results show that the Gaussian kernel support vector machine model based on a grid search has a good prediction effect on the electric-energy substitution potential in Beijing, which has certain guiding significance for electric-energy substitution potential analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Electric energy substitution is an important way to achieve carbon peak carbon neutrality;Liu;Report. Obs.,2021

2. Guiding Opinions on Promoting Electric Energy Substitution,2016

3. Architecture and key technologies of energy Internet;Yan;Power Grid Technol.,2016

4. Short-term load combination forecasting by grey model and least square support vector machine;Tang;Power Syst. Technol.,2009

5. Apparent potential of energy saving and emission reduction analysis based on DEA model;Song;Environ. Pollut. Prev.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3