Numerical Assessment of Auto-Adaptive Energy Management Strategies Based on SOC Feedback, Driving Pattern Recognition and Prediction Techniques

Author:

Zanelli AlessandroORCID,Servetto Emanuele,De Araujo Philippe,Vankayala Sujeet Nagaraj,Vondrak Adam

Abstract

The Equivalent Consumption Minimization Strategy (ECMS) is a well-known control strategy for the definition of optimal power-split in hybrid-electric vehicles, because of its effectiveness and reduced calibration effort. In this kind of Energy Management Systems (EMS), the correct identification of an equivalence factor (K), which translates electric power in equivalent fuel consumption, is of paramount importance. To guarantee charge sustaining operation, the K factor must be adjusted to different mission profiles. Adaptive ECMS (A-ECMS) techniques have thus been introduced, which automatically determine the optimal equivalence factor based on the vehicle mission. The aim of this research activity is to assess the potential in terms of fuel consumption and charge sustainability of different A-ECMS techniques on a gasoline hybrid-electric passenger car. First, the 0D vehicle and powertrain model was developed in the commercial CAE software GT-SUITE. An ECMS-based EMS was used to control the baseline powertrain and three alternative versions of an auto-adaptive algorithm were implemented on top of that. The first A-ECMS under study was based on feedback from the battery State of Charge, while the second and third on a Driving Pattern Recognition/Prediction algorithm. Fuel consumption was assessed using the New European Driving Cycle (NEDC), the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) and Real Driving Emissions (RDE) driving cycles by means of numerical simulation. A potential improvement of up to 4% Fuel Economy was ultimately achieved on an RDE driving cycle with respect to the baseline ECMS.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3