Laboratory Study of the Influence of Fluid Rheology on the Characteristics of Created Hydraulic Fracture

Author:

Shevtsova Anna,Stanchits SergeyORCID,Bobrova MariaORCID,Filev Egor,Borodin SergeyORCID,Stukachev Vladimir,Magadova Lyubov

Abstract

In the last decade, the negative impact of hydraulic fracturing fluids on the reservoir properties has been noted, which has led to the new trend of improving characteristics and developing new hydraulic fracturing fluids. As an alternative option to the traditionally used cross-linked fluids based on guar solution, in our laboratory we have tested fluids having a branched spatial structure, which allowed them to hold and transport proppants, despite the low viscosity of this kind of fluids (100–200 mPa·s measured at 100 s−1). Existing theoretical models of hydraulic fracture (HF) propagation have some limitations in predicting the influence of fracturing fluids on reservoir properties. Unfortunately, in situ experiments in the target reservoir are difficult and expensive. Thus, laboratory experiments can be considered as a reasonable alternative for testing new fluids, since they can provide comprehensive information about the properties of the created HF before the application of a new hydraulic fracturing technique in the field conditions. This paper presents the results of an experimental study of hydraulic fracturing of granite samples in laboratory conditions. The injection of water- and oil-based unconventional fracturing fluids was performed to study the influence of fluid rheology on the dynamics of the hydraulic fracture propagation process and parameters of the created HF. We have found that the fracturing fluid viscosity affects the parameters of the created HF, such as aperture, propagation velocity, breakdown pressure, and HF surface tortuosity. The obtained relationships can be taken into account for Hydraulic Fracture modelling, which may increase the efficiency of the hydraulic fracturing in the field conditions.

Funder

the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3