Evolutionary Optimization of Ensemble Learning to Determine Sentiment Polarity in an Unbalanced Multiclass Corpus

Author:

García-Mendoza Consuelo V.,Gambino Omar J.,Villarreal-Cervantes Miguel G.ORCID,Calvo HiramORCID

Abstract

Sentiment polarity classification in social media is a very important task, as it enables gathering trends on particular subjects given a set of opinions. Currently, a great advance has been made by using deep learning techniques, such as word embeddings, recurrent neural networks, and encoders, such as BERT. Unfortunately, these techniques require large amounts of data, which, in some cases, is not available. In order to model this situation, challenges, such as the Spanish TASS organized by the Spanish Society for Natural Language Processing (SEPLN), have been proposed, which pose particular difficulties: First, an unwieldy balance in the training and the test set, being this latter more than eight times the size of the training set. Another difficulty is the marked unbalance in the distribution of classes, which is also different between both sets. Finally, there are four different labels, which create the need to adapt current classifications methods for multiclass handling. Traditional machine learning methods, such as Naïve Bayes, Logistic Regression, and Support Vector Machines, achieve modest performance in these conditions, but used as an ensemble it is possible to attain competitive execution. Several strategies to build classifier ensembles have been proposed; this paper proposes estimating an optimal weighting scheme using a Differential Evolution algorithm focused on dealing with particular issues that multiclass classification and unbalanced corpora pose. The ensemble with the proposed optimized weighting scheme is able to improve the classification results on the full test set of the TASS challenge (General corpus), achieving state of the art performance when compared with other works on this task, which make no use of NLP techniques.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3