Biological Profile of Synthetic and Natural Indole Derivatives: Paving New Paths in Cancer Treatment

Author:

Janeiro Ana Margarida1,Marques Carolina S.2ORCID

Affiliation:

1. Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal

2. LAQV-REQUIMTE, Institute for Advanced Studies and Research, University of Évora, Rua Romão Ramalho, 59, 7000-641 Évora, Portugal

Abstract

The indole scaffold is considered a privileged framework in the design and synthesis of several active pharmaceutical ingredients, particularly as promising anticancer agents. Its presence in several bioactive natural compounds has caught the attention of the scientific community, which has been committed to unveiling its biosynthetic pathways and generating multiple derivatives with innovative synthetic routes. The large variety of structural derivatives enhances their use in multiple bioapplications and pharmacological activities. In this review, the reader will have easy access to some examples of natural and synthetic indole derivatives with antimicrobial, antidepressant, anti-inflammatory, antiviral, antimigraine, and antiemetic activity. However, the main topic of this review is related to cancer and the importance of indole derivatives as promising anticancer drugs. Two of the reasons why cancer is considered a massive problem worldwide are attributed to the struggle to develop target-specific drugs while avoiding drug resistance. Among countless drugs targeting specific proteins involved in tumorigenesis, prompting life quality in the treatment of several cancer types, protein kinases, desoxyribonucleic acid topoisomerases, and P-glycoprotein have been shown to be the main targets when it comes to the development of novel anticancer agents. Furthermore, indole and its derivatives are also studied regarding affinity to other targets related to cancer. This review aims to highlight the utility of the indole scaffold in anticancer drug design, inspiring the creation and synthesis of new derivatives that target specific proteins and address drug resistance challenges.

Funder

FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3