Abstract
One of the most important ocean water parameters in world ocean observations is temperature. In the application of high-precision ocean sensors, there are often various interferences and random noises. These noises will cause the linearity of the sensor to change, and it is difficult to estimate the statistical characteristics, and the results will deviate from the real temperature. Aiming at the problems in the application, this paper proposes a compound Kalman smoothing filter (CKSF) algorithm based on least square curve fitting. This algorithm first analyzes the system model of the sensor, uses the least square method to fit the theoretical data and eliminate the non-linear factors caused by system itself, then estimates the statistical characteristics of the noise required by modeling, using the wavelet transform method to track the change of noise in real time and to accurately estimate the noise variance. Finally, a compound filtering method including wavelet transform and Kalman smoothing filtering is used as the main denoising algorithm, which is more accurate than a single Kalman filtering result. The algorithm is applied to the temperature measurement process of the ocean temperature sensor. The results show that the accuracy and stability of the sensor are improved.
Funder
Ocean University of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献