A Comparative Study of Four Metaheuristic Algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for Evacuation Planning

Author:

Niyomubyeyi OliveORCID,Sicuaio Tome Eduardo,Díaz González José IgnacioORCID,Pilesjö Petter,Mansourian AliORCID

Abstract

Evacuation planning is an important activity in disaster management to reduce the effects of disasters on urban communities. It is regarded as a multi-objective optimization problem that involves conflicting spatial objectives and constraints in a decision-making process. Such problems are difficult to solve by traditional methods. However, metaheuristics methods have been shown to be proper solutions. Well-known classical metaheuristic algorithms—such as simulated annealing (SA), artificial bee colony (ABC), standard particle swarm optimization (SPSO), genetic algorithm (GA), and multi-objective versions of them—have been used in the spatial optimization domain. However, few types of research have applied these classical methods, and their performance has not always been well evaluated, specifically not on evacuation planning problems. This research applies the multi-objective versions of four classical metaheuristic algorithms (AMOSA, MOABC, NSGA-II, and MSPSO) on an urban evacuation problem in Rwanda in order to compare the performances of the four algorithms. The performances of the algorithms have been evaluated based on the effectiveness, efficiency, repeatability, and computational time of each algorithm. The results showed that in terms of effectiveness, AMOSA and MOABC achieve good quality solutions that satisfy the objective functions. NSGA-II and MSPSO showed third and fourth-best effectiveness. For efficiency, NSGA-II is the fastest algorithm in terms of execution time and convergence speed followed by AMOSA, MOABC, and MSPSO. AMOSA, MOABC, and MSPSO showed a high level of repeatability compared to NSGA-II. It seems that by modifying MOABC and increasing its effectiveness, it could be a proper algorithm for evacuation planning.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3