Engineering Planar Transverse Domain Walls in Biaxial Magnetic Nanostrips by Tailoring Transverse Magnetic Fields with Uniform Orientation

Author:

Yu Mingna,Li Mei,Lu JieORCID

Abstract

Designing and realizing various magnetization textures in magnetic nanostructures are essential for developing novel magnetic nanodevices in the modern information industry. Among all these textures, planar transverse domain walls (pTDWs) are the simplest and the most basic, which make them popular in device physics. In this work, we report the engineering of pTDWs with arbitrary tilting attitude in biaxial magnetic nanostrips by transverse magnetic field profiles with uniform orientation but tuneable strength distribution. Both statics and axial-field-driven dynamics of these pTDWs are analytically investigated. It turns out that, for statics, these pTDWs are robust against disturbances which are not too abrupt, while for dynamics, it can be tailored to acquire higher velocity than Walker’s ansatz predicts. These results should provide inspiration for designing magnetic nanodevices with novel one-dimensional magnetization textures, such as 360 ∘ walls, or even two-dimensional ones, such as vortices and skyrmions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3