In Situ Gel of Triamcinolone Acetonide-Loaded Solid Lipid Nanoparticles for Improved Topical Ocular Delivery: Tear Kinetics and Ocular Disposition Studies

Author:

Tatke Akshaya,Dudhipala Narendar,Janga Karthik,Balguri Sai,Avula Bharathi,Jablonski Monica,Majumdar Soumyajit

Abstract

Triamcinolone acetonide (TA), an intermediate acting corticosteroid, is used in the treatment of posterior ocular diseases, such as inflammation, posterior uveitis, and diabetic macular edema. The objective of this investigation was to prepare TA-loaded solid lipid nanoparticles (TA-SLNs) and in situ gel (TA-SLN-IG) formulations for delivery into the deeper ocular tissues through the topical route. TA-SLNs were prepared by hot homogenization and ultrasonication method using glyceryl monostearate and Compritol® 888ATO as solid lipids and Tween®80 and Pluronic® F-68 as surfactants. TA-SLNs were optimized and converted to TA-SLN-IG by the inclusion of gellan gum and evaluated for their rheological properties. In vitro transcorneal permeability and in vivo ocular distribution of the TA-SLNs and TA-SLN-IG were studied using isolated rabbit corneas and New Zealand albino rabbits, respectively, and compared with TA suspension, used as control (TA-C). Particle size, PDI, zeta potential, assay, and entrapment efficiency of TA-SLNs were in the range of 200–350 nm, 0.3–0.45, −52.31 to −64.35 mV, 70–98%, and 97–99%, respectively. TA-SLN-IG with 0.3% gellan gum exhibited better rheological properties. The transcorneal permeability of TA-SLN and TA-SLN-IG was 10.2 and 9.3-folds higher compared to TA-C. TA-SLN-IG showed maximum tear concentration at 2 h, indicating an improved pre-corneal residence time, as well as higher concentrations in aqueous humor, vitreous humor and cornea at 6 h, suggesting sustained delivery of the drug into the anterior and posterior segment ocular tissues, when compared to TA-SLN and TA-C. The results, therefore, demonstrate that the lipid based nanoparticulate system combined with the in situ gelling agents can be a promising drug delivery platform for the deeper ocular tissues.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3