Author:
Zhao Wei,Shao Fei,Ye Song,Zheng and Wei
Abstract
As is well known, multi-hop range-free localization algorithms demonstrate pretty good performance in isotropic networks in which sensor nodes distribute evenly and densely. However, these algorithms are easily affected by network topology, causing a significant decrease in positioning accuracy. To improve the localization performance in anisotropic networks, this paper presents a multi-hop range-free localization algorithm based on Least Square Regularized Regression (LSRR). By building a mapping relationship between hop counts and real distances, we can regard the process of localization as a regularized regression. Firstly, the proximity information of the given network is measured. Then, a mapping model between the geographical distances and the hop distances is constructed by LSRR. Finally, each sensor node finds its own position via this mapping. The Average Localization Error (ALE) metric is used to evaluate the proposed method in our experiments, and results show that, compared with similar methods, our approach can effectively decrease the effect of anisotropy, thus considerably improving the positioning accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献