Neural Identification of a Temperature Field in the Storing Phase of Thermal Energy in Rock Bed Thermal Storage

Author:

Mueller Wojciech,Koszela KrzysztofORCID,Kujawa SebastianORCID

Abstract

Thermal energy stored within a rock bed thermal storage system, which is mostly used in agriculture, can be identified during the storage phase using mathematical models based on heat transfer, which concerns batteries running in a vertical setting. However, this requires the conversion of differential equations into algebraic equations, as well as knowledge about the initial and boundary conditions. Furthermore, a lack of information or incomplete information about the initial conditions makes it difficult or impossible to evaluate the volume of stored energy, or can cause significant errors during evaluation. Such situations occur in systems equipped with a rock battery, in which solar collectors act as source of energy. Considering the above, as well as the lack of a model for batteries in a vertical setting, we identified the need for research into the storage phase of rock bed thermal storage systems, working in a horizontal setting, and generating MLP-type neural models. Among these models, MLP 4-7-1 turned out to be the best both in terms of the values of regression statistics and possibilities of generalization. According to the authors, artificial neural models depicting temperature changeability in storage phase will be helpful in the development of a new methodology that can predict the heat volume in rock bed thermal storage systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3