Abstract
The main challenge of automatic license plate recognition (ALPR) systems is that the overall performance is highly dependent upon the results of each component in the system’s pipeline. This paper proposes an improved ALPR system for the Jordanian license plates. Ceiling analysis is carried out to identify potential enhancements in each processing stage of a previously reported ALPR system. Based on the obtained ceiling analysis results, several enhancements are then suggested to improve the overall performance of the system under study. These improvements are (i) vertical-edge histogram analysis and size estimation of the candidate regions in the detection stage and (ii) de-rotation of the misaligned license plate images in the segmentation unit. These enhancements have resulted in significant improvements in the overall system performance despite a <1% increase in the execution time. The performance of the developed ALPR is assessed experimentally using a dataset of 500 images for parked and moving vehicles. The obtained results are found to be superior to those reported in equivalent systems, with a plate detection accuracy of 94.4%, character segmentation accuracy of 91.9%, and character recognition accuracy of 91.5%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced Machine Learning-Driven Automated Multi-Level Parking System;2024 IEEE Symposium on Wireless Technology & Applications (ISWTA);2024-07-20
2. Automatic Number Plate Recognition of Saudi License Car Plates;Engineering, Technology & Applied Science Research;2022-04-09