Improved Automatic License Plate Recognition in Jordan Based on Ceiling Analysis

Author:

Al-Yaman MusaORCID,Alhaj Mustafa Haneen,Hassanain Sara,Abd AlRaheem Alaa,Alsharkawi AdhamORCID,Al-Taee Majid

Abstract

The main challenge of automatic license plate recognition (ALPR) systems is that the overall performance is highly dependent upon the results of each component in the system’s pipeline. This paper proposes an improved ALPR system for the Jordanian license plates. Ceiling analysis is carried out to identify potential enhancements in each processing stage of a previously reported ALPR system. Based on the obtained ceiling analysis results, several enhancements are then suggested to improve the overall performance of the system under study. These improvements are (i) vertical-edge histogram analysis and size estimation of the candidate regions in the detection stage and (ii) de-rotation of the misaligned license plate images in the segmentation unit. These enhancements have resulted in significant improvements in the overall system performance despite a <1% increase in the execution time. The performance of the developed ALPR is assessed experimentally using a dataset of 500 images for parked and moving vehicles. The obtained results are found to be superior to those reported in equivalent systems, with a plate detection accuracy of 94.4%, character segmentation accuracy of 91.9%, and character recognition accuracy of 91.5%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Machine Learning-Driven Automated Multi-Level Parking System;2024 IEEE Symposium on Wireless Technology &amp; Applications (ISWTA);2024-07-20

2. Automatic Number Plate Recognition of Saudi License Car Plates;Engineering, Technology & Applied Science Research;2022-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3