Author:
Gusev Sergey Vladimirovich,Nikoporenko Andrey Viktorovich,Zakharov Vyacheslav Sergeevich,Ezhov Vasily Mikhailovich,Varaksin Alexey Yurievich,Yanovsky Leonid Samoilovich,Arefiev Konstantin Yurievich
Abstract
The article is devoted to estimating the intensifying efficiency of methane-air ignition by adding a small amount of hydrogen and/or ethylene. It presents features of the experimental determination of the ignition delay period for fuel-air mixtures using shock installation and methods of processing empirical data. The testing of the known ignition kinetic models for methane, hydrogen, and ethylene with air was carried out. The results of test calculations were compared with those previously published, as well as original experiments. The kinetic model was chosen to provide the minimum discrepancy between the calculated and experimental data. The regularities of the effect of hydrogen and ethylene additives on the ignition dynamics of the methane-air mixture for the range of initial pressures from 1 to 8 bar at temperatures from 900 to 1100 K were obtained with the use of non-stationary numerical modeling. Methane-air mixtures with the mass fraction of additives not exceeding 10% were studied. The quantitative indicators of possible reduction in the ignition delay period of methane-air mixtures were detected.
Funder
The Ministry of Education and Science of the Russian Federation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献