Abstract
Existing SCS (space-constrained scheduling) studies fall short of minimizing the effect of the stacking of trades that decline productivity due to an increase in resources within a physically limited work area. This article presents a space-constrained scheduling optimization (i.e., SSO) method for minimizing the stacking of trades. It imports schedule information from the project database, extracts IFC files of construction site area from the BIM model, defines the occupation density function of each activity to track the level of stacking of trades, and identifies the optimal solution (i.e., the optimal set of pairs of execution pattern alternatives and start times of activities) by implementing genetic algorithm (GA) optimization analysis. The study is of value to practitioners because SSO provides an easy-to-use computerized tool that reduces the lengthy computations relative to data processing and GAs. Test cases verify the validity of the computational method.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献