Abstract
On-device artificial intelligence has attracted attention globally, and attempts to combine the internet of things and TinyML (machine learning) applications are increasing. Although most edge devices have limited resources, time and energy costs are important when running TinyML applications. In this paper, we propose a structure in which the part that preprocesses externally input data in the TinyML application is distributed to the hardware. These processes are performed using software in the microcontroller unit of an edge device. Furthermore, resistor–transistor logic, which perform not only windowing using the Hann function, but also acquire audio raw data, is added to the inter-integrated circuit sound module that collects audio data in the voice-recognition application. As a result of the experiment, the windowing function was excluded from the TinyML application of the embedded board. When the length of the hardware-implemented Hann window is 80 and the quantization degree is 2−5, the exclusion causes a decrease in the execution time of the front-end function and energy consumption by 8.06% and 3.27%, respectively.
Funder
BK21 FOUR project funded by the Ministry of Education
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference37 articles.
1. Robust navigation with tinyML for autonomous mini-vehicles;De Prado;arXiv,2020
2. The case for retraining of ML models for IoT device identification at the edge;Kolcun;arXiv,2020
3. DaDianNao: A Neural Network Supercomputer
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献