ROADLANE—The Modular Framework to Support Recognition Algorithms of Road Lane Markings

Author:

Franco Felipe,Santos Max Mauro DiasORCID,Yoshino Rui TadashiORCID,Yoshioka Leopoldo RidekiORCID,Justo João FranciscoORCID

Abstract

One of the main actions of the driver is to keep the vehicle in a road lane within its markings, which could be aided with modern driver-assistance systems. Forward digital cameras in vehicles allow deploying computer vision strategies to extract the road recognition characteristics in real-time to support several features, such as lane departure warning, lane-keeping assist, and traffic recognition signals. Therefore, the road lane marking needs to be recognized through computer vision strategies providing the functionalities to decide on the vehicle’s drivability. This investigation presents a modular architecture to support algorithms and strategies for lane recognition, with three principal layers defined as pre-processing, processing, and post-processing. The lane-marking recognition is performed through statistical methods, such as buffering and RANSAC (RANdom SAmple Consensus), which selects only objects of interest to detect and recognize the lane markings. This methodology could be extended and deployed to detect and recognize any other road objects.

Funder

Federal University of Technology - Paraná

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Introduction to Self-Driving Vehicle Technology;Sjafrie,2019

2. Automated Driving and Driver Assistance Systems;Denton,2019

3. Autonomous vehicles: challenges, opportunities, and future implications for transportation policies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3