Atmospheric Optical Turbulence Characteristics over the Ocean Relevant to Astronomy and Atmospheric Physics

Author:

Xu ManmanORCID,Shao ShiyongORCID,Weng Ningquan,Zhou Liangping,Liu Qing,Zhao Yuefeng

Abstract

Due to the space and time constraints of turbulence measurement equipment and the experiment scene, it is difficult to obtain the atmosphere refractive index structure constant over the ocean. In this paper, the characteristics of atmospheric optical turbulence in offshore and open ocean conditions are summarized by analyzing the meteorological data obtained from two ocean atmospheric optical parameter field experiments. Because of the influence of land undersurface, the turbulence strength in offshore conditions is roughly the same as that on land and presents different characteristics in open ocean. Compared with the offshore area, the turbulence strength over the open ocean near-surface decreases during the day and increases at night, and the diurnal variation characteristics weaken. The turbulence strength profiles over the offshore area show different characteristics at different times, where the turbulence strength in the morning is higher than that in the evening. By retrieving the meteorological factors affecting the turbulence, it is found that the temperature gradient and wind shear are in good agreement with turbulence strength in both offshore and open ocean areas. Furthermore, the integrated parameters for astronomy and optical telecommunication are derived from profiles over the offshore and open ocean areas. It is of great significance to research the turbulent characteristics of ocean atmosphere for optical transmission and astronomical observations.

Funder

National Key Research and Development Program of China

the open project of Equipment pre-research fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3