Abstract
This article demonstrates the use of data mining methods for evidence-based smart decision support in quality control. The data were collected in a measurement campaign which provided a new and potential quality measurement approach for manufacturing process planning and control. In this study, the machine learning prediction models and Explainable AI methods (XAI) serve as a base for the decision support system for smart manufacturing. The discovered information about the root causes behind the predicted failure can be used to improve the quality, and it also enables the definition of suitable security boundaries for better settings of the production parameters. The user’s need defines the given type of information. The developed method is applied to the monitoring of the surface roughness of the stainless steel strip, but the framework is not application dependent. The modeling analysis reveals that the parameters of the annealing and pickling line (RAP) have the best potential for real-time roughness improvement.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference26 articles.
1. Statistical Process Control;Oakland,2007
2. Data-driven smart production line and its common factors
3. Intelligent Decision Support Systems;Phillips-Wren,2013
4. Data Mining for Design and Manufacturing: Methods and Applications,2002
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献