Abstract
This paper presents a novel meta-functional auxetic unit (MFAU) cell designed to improve performance and weight ratio for structural bridge bearing applications. Numerical investigations were conducted using three-dimensional finite element models validated by experimental results. The validated models were exposed to compression and buckling actions to identify structural failure modes, with special attention placed on the global behaviours of the meta-functional auxetic (MFA) composite bridge bearing. This bearing uses an unprecedented auxetic sandwich core design consisting of multiple MFAU cells. Numerical predictions of the elastic local critical buckling loads of the MFAU cell were in excellent agreement with both the analytical and experimental results, with an observed discrepancy of less than 1%. These results demonstrate that local buckling failures of MFAU cells can potentially be incurred prior to yielding under compression due to their slenderness ratios. Surprisingly, the designed sandwich core used in the MFA composite bridge bearing model can mimic an auxetic structure with significant crashworthiness, implying that this novel core composite structure can be tailored for structural bridge bearing applications. Parametric studies were thus carried out in order to enrich our insight into the MFA composite elements. These insights, stemming from both experimental and numerical studies, enable a novel design paradigm for MFAU that can significantly enhance the structural performance of MFA composite bridge bearings in practice.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference72 articles.
1. Guide Specifications for Seismic Isolation Design,2010
2. S6-14—Canadian Highway Bridge Design Code,2014
3. Displacement-Based Seismic Design of Structures;Priestley,2007
4. Dynamic and Failure Characteristics of Bridgestone Bearings;Kelly,1991
5. Internal Rupture of Bonded Rubber Cylinders in Tension
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献