Abstract
One of the crucial problems in current construction is energy, resource, and material efficient technologies in both industrial and civil engineering, associated with new material manufacturing and building construction. This article is devoted to developing comprehensive technology for activation effects on concrete made by various production techniques: vibration, centrifugation, and vibro-centrifugation. The possibility of a significant improvement in the microstructure of concrete and obtaining materials with increased specified characteristics, depending on its manufacturing technology, were studied during the complex activation effect exposed to this concrete and its components. Chemical activation of water and mechanical activation of cement were considered. The urgency and prospects of double, complex mechanochemical activation of concrete mixture components were substantiated. It was proven that the complex mechanochemical activation of the concrete mixture components gives a synergistic effect in obtaining concrete composition with an improved structure and improved characteristics. Furthermore, the relationship between concrete production technology and the technology of activation of its components was established. It was revealed that the most effective is the complex mechanochemical activation of vibro-centrifuged concrete, which gives an increase in strength up to 30%. The study results indicate a further direction of development associated with an increase in variatropic characteristics using both prescription and technological factors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献