Author:
Wang Liyan,Ma Jianqing,Guo Qianhui,Liu Liang,Shou Jiangnan,Sun Aojie,Zhao Liaoyuan
Abstract
Fenton reaction is a powerful technology for pollutants’ removal from water. However, the cost of H2O2 becomes one of the major stumbling blocks in its application. H2O2 has a relatively high price and is easily decomposed during transportation and use; therefore, in situ synthesis of H2O2 could improve economic benefits effectively. In this study, a Fe/Ni/Pd ternary metal-doped graphitic carbon nitride (FeNi-Pd@CN) is prepared, and in situ H2O2 generation using formic acid as hydrogen sources for organics removal was proved. The catalyst is advantageous, as H2O2 could accumulate to 1.69 mmol/L in 150 min when pumping air rather than oxygen gases in other studies. Furthermore, 92.0% of Acid Red 73 (200 mg/L) and 93.2% of tetracycline hydrochloride (10 mg/L) could be removed in 150 min without any pH adjustment. Characterization results show that the catalyst has good stability in metal leaching and reuse tests. It is proved that •OH and •O2− are the main reactive oxygen species, and a synergistic effect between Fe and Ni exists that enhances ROS generation for organics degradation. This work offers a promising method to remove refectory organic contaminants from industrial wastewater.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation
Ningbo Science &Technology Bureau
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献