Constrained Multi-Objective Optimization of Simulated Tree Pruning with Heterogeneous Criteria

Author:

Strnad Damjan,Kohek ŠtefanORCID

Abstract

Virtual pruning of simulated fruit tree models is a useful functionality provided by software tools for computer-aided horticultural education and research. It also enables algorithmic pruning optimization with respect to a set of quantitative objectives, which is important for analytical purposes and potential applications in automated pruning. However, the existing studies in pruning optimization focus on a single type of objective, such as light distribution within the crown. In this paper, we propose the use of heterogeneous objectives for discrete multi-objective optimization of simulated tree pruning. In particular, the average light intake, crown shape, and tree balance are used to observe the emergence of different pruning patterns in the non-dominated solution sets. We also propose the use of independent constraint objectives as a new mechanism to confine overfitting of solutions to individual pruning criteria. Finally, we perform the comparison of NSGA-II, SPEA2, and MOEA/D-EAM on this task. The results demonstrate that SPEA2 and MOEA/D-EAM, which use external solution archives, can produce better sets of non-dominated solutions than NSGA-II.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Analyzing fruit tree architecture: Implications for tree management and fruit production;Costes;Hort. Rev.,2006

2. A New Insight into Pruning Strategy in the Biennial Cycle of Fruiting: Vegetative Growth at Shoot and Whole-tree Level, Yield and Fruit Quality of Apple;Ersin;Not. Bot. Horti Agrobo.,2017

3. Control of fruit tree pests through manipulation of tree architecture;Simon;Pest Technol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3