Impact Response of Composite Sandwich Cylindrical Shells

Author:

Reis Paulo N. B.ORCID,Coelho Carlos A. C. P.ORCID,Navalho Fábio V. P.

Abstract

Nowadays, due to the complexity and design of many advanced structures, cylindrical shells are starting to have numerous applications. Therefore, the main goal of this work is to study the effect of thickness and the benefits of a carbon composite sandwich cylindrical shell incorporating a cork core, compared to a conventional carbon composite cylindrical shell, in terms of the static and impact performances. For this purpose, static and impact tests were carried out with the samples freely supported on curved edges, while straight edges were bi-supported. A significant effect of the thickness on static properties and impact performance was observed. Compared to thinner shells, the failure load on the static tests increased by 237.9% and stiffness by 217.2% for thicker shells, while the restored energy obtained from the impact tests abruptly increased due to the collapse that occurred for the thinner ones. Regarding the sandwich shells, the incorporation of a cork core proved to be beneficial because it promoted an increase in the restored energy of around 44.8% relative to the conventional composite shell. Finally, when a carbon skin is replaced by a Kevlar one (hybridization effect), an improvement in the restored energy of about 20.8% was found. Therefore, it is possible to conclude that numerous industrial applications can benefit from cylindrical sandwiches incorporating cork, and their hybridization with Kevlar fibres should be especially considered when they are subject to impact loads. This optimized lay-up is suggested because Kevlar fibres fail through a series of small fibril failures, while carbon fibres exhibit a brittle collapse.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3