Abstract
In Japan, breakthroughs to improve the share of renewable energy in the energy mix have become an urgent issue. However, the problem could not be solved by simply adding more power plants for various technical reasons, such as the unsuitability of using renewable energy as baseloads due to its intermittency. Furthermore, establishing the required cooperative systems for regionally distributed power adjustment is also tricky. Based on these backgrounds, this paper constructs an operation plan that minimizes CO2 emissions by correcting the generation and load patterns of the renewable energy of solar power, utilizing power generation from waste as a substitute for baseload power, and estimating the power demand of each facility. The result shows that by adjusting the operation plans, the model can reduce CO2 emission by 20.95 and 8.30% in weeks with high and low solar power generation surpluses, respectively. Furthermore, these results show that it is possible to reduce CO2 emissions in regions that have power sources with low CO2 emission coefficients by forecasting the amount of power generation and power load in the region and appropriately planning the operation in advance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献