Actual Measurement and Evaluation of the Balance between Electricity Supply and Demand in Waste-Treatment Facilities and Development of Adjustment Methods

Author:

Yoshidome Daiki,Kikuchi Ryo,Okanoya Yuki,Pandyaswargo Andante HadiORCID,Onoda Hiroshi

Abstract

In Japan, breakthroughs to improve the share of renewable energy in the energy mix have become an urgent issue. However, the problem could not be solved by simply adding more power plants for various technical reasons, such as the unsuitability of using renewable energy as baseloads due to its intermittency. Furthermore, establishing the required cooperative systems for regionally distributed power adjustment is also tricky. Based on these backgrounds, this paper constructs an operation plan that minimizes CO2 emissions by correcting the generation and load patterns of the renewable energy of solar power, utilizing power generation from waste as a substitute for baseload power, and estimating the power demand of each facility. The result shows that by adjusting the operation plans, the model can reduce CO2 emission by 20.95 and 8.30% in weeks with high and low solar power generation surpluses, respectively. Furthermore, these results show that it is possible to reduce CO2 emissions in regions that have power sources with low CO2 emission coefficients by forecasting the amount of power generation and power load in the region and appropriately planning the operation in advance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. GIS-Based Distribution System Planning for New PV Installations

2. Impact of PV System Tracking on Energy Production and Climate Change

3. Japan’s Energy Problemshttps://www.enecho.meti.go.jp/about/special/johoteikyo/energyissue2020_1.html

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3