Intelligent Prediction of Aeroengine Wear Based on the SVR Optimized by GMPSO

Author:

Zheng BoORCID,Gao Feng,Ma Xin,Zhang Xiaoqiang

Abstract

In order to predict aeroengine wear accurately and automatically, as a predictor, support vector regression (SVR) was optimized by means of particle swarm optimization (PSO). The guided mutation strategy of PSO (GMPSO) is presented herein to determine the proper structure parameters of an SVR, as well as the embedding dimensions of the training samples. The guided mutation strategy was able to increase the diversity of particles and improve the probability of finding the global extremum. Furthermore, single-step and multi-step prediction methods were designed to meet different accuracy requirements. A prediction comparison study on spectral analysis data was carried out, and the contrast experiments show that compared with SVR optimized by means of a traditional PSO, a neural network and an auto regressive moving average (ARMA) prediction model, the SVR optimized by means of the GMPSO approach produced prediction results not only with higher accuracy, but also with better consistency.

Funder

Project of Sichuan Province Science and Technology Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3