Application of Probabilistic Neural Networks Using High-Frequency Components’ Differential Current for Transformer Protection Schemes to Discriminate between External Faults and Internal Winding Faults in Power Transformers

Author:

Chiradeja Pathomthat,Pothisarn Chaichan,Phannil Nattanon,Ananwattananporn Santipont,Leelajindakrairerk Monthon,Ngaopitakkul Atthapol,Thongsuk Surakit,Pornpojratanakul Vinai,Bunjongjit Sulee,Yoomak Suntiti

Abstract

Internal and external faults in a power transformer are discriminated in this paper using an algorithm based on a combination of a discrete wavelet transform (DWT) and a probabilistic neural network (PNN). DWT decomposes high-frequency fault components using the maximum coefficients of a ¼ cycle DWT as input patterns for the training process in a decision algorithm. A division algorithm between a zero sequence of post-fault differential current waveforms and the differential current coefficient in the ¼ cycle DWT is used to detect the maximum ratio and faults. The simulation system uses various study cases based on Thailand’s electricity transmission and distribution systems. The simulation results demonstrated that the PNN and BPNN are effectively implemented and perform fault detection with satisfactory accuracy. However, the PNN method is most suitable for detecting internal and external faults, and the maximum coefficient algorithm is the most effective in detecting the fault. This study will be useful in differential protection for power transformers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3