Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network

Author:

Hao Xinyu,Zheng Yuan,Lu Li,Pan Hong

Abstract

Rolling bearings are the most fault-prone parts in rotating machinery. In order to find faults in time and reduce losses, this paper presents an intelligent diagnosis method for rolling bearings. At present, the deep residual network (RESNET) is the most widely used convolutional neural network (CNN) and has become one of the hotspots in fault diagnosis. However, the fully connected layer of the deep residual network has the disadvantage of too many training parameters, which makes the model training and testing time longer. So, we proposed a new network structure which the global average pooling (GAP) technology replaces the fully connected layer part of the traditional RESNET. It effectively solves the problem of too many parameters of the traditional RESNET model, and uses data enhancement, dropout, and other deep learning training techniques to prevent the model from overfitting. Experiments show that the accuracy of fault diagnosis of the improved algorithm reaches 99.83%, training time has been shortened. Also, the whole process of rolling bearing fault detection does not need any manually extract features, and this “end-to-end” algorithm has good versatility and operability.

Funder

National Natural Science Foundation of China

National Key Research and Development Program Intergovernmental International Science and Technology Innovation Cooperation Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3