Radio Frequency Fingerprinting for Frequency Hopping Emitter Identification

Author:

Kang JusungORCID,Shin Younghak,Lee Hyunku,Park Jintae,Lee Heungno

Abstract

In a frequency hopping spread spectrum (FHSS) network, the hopping pattern plays an important role in user authentication at the physical layer. However, recently, it has been possible to trace the hopping pattern through a blind estimation method for frequency hopping (FH) signals. If the hopping pattern can be reproduced, the attacker can imitate the FH signal and send the fake data to the FHSS system. To prevent this situation, a non-replicable authentication system that targets the physical layer of an FHSS network is required. In this study, a radio frequency fingerprinting-based emitter identification method targeting FH signals was proposed. A signal fingerprint (SF) was extracted and transformed into a spectrogram representing the time–frequency behavior of the SF. This spectrogram was trained on a deep inception network-based classifier, and an ensemble approach utilizing the multimodality of the SFs was applied. A detection algorithm was applied to the output vectors of the ensemble classifier for attacker detection. The results showed that the SF spectrogram can be effectively utilized to identify the emitter with 97% accuracy, and the output vectors of the classifier can be effectively utilized to detect the attacker with an area under the receiver operating characteristic curve of 0.99.

Funder

LIGNex1

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Standard for Information Technology—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications IEEE Std https://ieeexplore.ieee.org/document/9363693

2. A Review of Radio Frequency Fingerprinting Techniques

3. Assessment of Features and Classifiers for Bluetooth RF Fingerprinting

4. Improving ZigBee Device Network Authentication Using Ensemble Decision Tree Classifiers With Radio Frequency Distinct Native Attribute Fingerprinting

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3