Abstract
Omnidirectional mobile wall-climbing robots have better motion performance than traditional wall-climbing robots. However, there are still challenges in designing and controlling omnidirectional mobile wall-climbing robots, which can attach to non-ferromagnetic surfaces. In this paper, we design a novel wall-climbing robot, establish the robot’s dynamics model, and propose a nonlinear model predictive control (NMPC)-based trajectory tracking control algorithm. Compared against state-of-the-art, the contribution is threefold: First, the combination of three-wheeled omnidirectional locomotion and non-contact negative pressure air chamber adhesion achieves omnidirectional locomotion on non-ferromagnetic vertical surfaces. Second, the critical slip state has been employed as an acceleration constraint condition, which could improve the maximum linear acceleration and the angular acceleration by 164.71% and 22.07% on average, respectively. Last, an NMPC-based trajectory tracking control algorithm is proposed. According to the simulation experiment results, the tracking accuracy is higher than the traditional PID controller.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献