Local Modal Frequency Improvement with Optimal Stiffener by Constraints Transformation Method

Author:

Chen Shenyan,Dai Ziqi,Shi Wenjing,Liu Yanjie,Li Jianhongyu

Abstract

Local modal vibration could adversely affect the dynamical environment, which should be considered in the structural design. For the mode switching phenomena, the traditional structural optimization method for problems with specific order of modal frequency constraints could not be directly applied to solve problems with local frequency constraints. In the present work, a novel approximation technique without mode tracking is proposed. According to the structural character, three reasonable assumptions, unchanged mass matrix, accordant modal shape, and reversible stiffness matrix, have been used to transform the optimization problem with local frequency constraints into a problem with nodal displacement constraints in the local area. The static load case is created with the modal shape equilibrium forces, then the displacement constrained optimization is relatively easily solved to obtain the optimal design, which satisfies the local frequency constraints as well. A numerical example is used to verify the feasibility of the proposed approximation method. Then, the method is further applied in a satellite structure optimization problem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Local Modal Analysis of Structural Dynamic Topology Optimization;Zhu;Chin. J. Aeronaut.,2005

2. Structural optimization with frequency constraints - A review

3. An efficient optimality criterion method for natural frequency constrained structures

4. Optimization of Structures with Frequency constraints;Venkayya;Am. Soc. Mech. Eng.,1983

5. An Effective Approximation Technique for Frequency Constraints in Frame Optimization;Garrent;Int. J. Numer. Methods Eng.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3