The Influence of Drying Temperature on Color Change of Hornbeam and Maple Wood Used as Surface and Inner Layers of Wood Composites

Author:

Klement IvanORCID,Vilkovský Peter,Vilkovská Tatiana,Orłowski Kazimierz A.ORCID,Barański Jacek,Chuchala DanielORCID,Suchta Aleksandra

Abstract

The thermal treatment of wood changes its structure due to the degradation of wood polymers (cellulose, hemicellulose and lignin), so the physical properties of wood are either improved or degraded. Color changes apply not only to natural wood, but also to such wood composites for which some amount of glue is used in their construction (e.g., plywood, blockboard or laminboard). This article is focused on the analysis of hornbeam and field maple wood color changes influenced by drying temperature. Two types of drying modes were used: hot-air mode where the temperature of the drying environment was 60 °C, and high-temperature mode with a drying temperature of 120 °C. The drying mode was divided into two phases depending on the moisture content of the wood. The compared woods had similar values of color coordinates at the beginning of drying. During hot-air drying, the largest changes in color coordinates occurred during the first 24 h. The total color difference between the color at the end and the beginning of drying was 7.3 for hornbeam and 11.1 for maple. The overall color difference between the compared woods was minimal. During high-temperature drying (120 °C), the color changes of the dried woods were more pronounced. In the case of maple wood, there was a very significant change in color and the value of ΔE* was twice as high as for hornbeam. The total color difference between the color at the end and at the beginning of drying was 8.7 for hornbeam and 18.9 for maple.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Causes of color changes in wood during drying

2. Wood Products: Thermal Degradation and Fire

3. Colour change of some wood species during artificial xenon radiation;Papp;Obuda Univ. e-Bull.,2012

4. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood

5. Wood and Cellulosic Chemistry;Hon,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3