Influences of Single-Lane Automatic Driving Systems on Traffic Efficiency and CO2 Emissions on China’s Motorways

Author:

Song Haokun,Zhao Fuquan,Liu Zongwei

Abstract

There are big differences between the driving behaviors of intelligent connected vehicles (ICVs) and traditional human-driven vehicles (HVs). ICVs will be mixed with HVs on roads for a long time in the future. Different intelligent functions and different driving styles will affect the condition of traffic flow, thereby changing traffic efficiency and emissions. In this paper, we focus on China’s expressways and secondary motorways, and the impacts of the ‘single-lane automatic driving system’ (SLADS) on traffic delay, road capacity and carbon dioxide (CO2) emissions were studied under different ICV penetration rates. Driving styles were regarded as important factors for scenario analysis. We found that with higher volume input, SLADS has an optimizing effect on traffic efficiency and CO2 emissions generally, which will be more significant as the ICV penetration rate increases. Additionally, enhancing the aggressiveness of driving behavior appropriately is an effective way to amplify the benefits of SLADS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Zhao Fuquan’s Insights on the Automotive Industry (Volume Ⅱ);Liu,2020

2. State-of-the-art and technical trends of intelligent and connected vehicles;Li;J. Automot. Saf. Energy,2017

3. Innovation and Development Strategies of China’s New-Generation Smart Vehicles Based on 4S Integration;Liu;Strateg. Study Chin. Acad. Eng.,2021

4. Policy and society related implications of automated driving: A review of literature and directions for future research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3