3-Hydroxy-5,6-epoxy-β-ionone Isolated from Invasive Harmful Brown Seaweed Sargassum Horneri Protects MH-S Mouse Lung Cells from Urban Particulate Matter-Induced Inflammation

Author:

Sanjeewa K. K. AsankaORCID,Kim Hyun-Soo,Lee Hyo-Geun,Jayawardena Thilina U.ORCID,Nagahawatta D. P.,Yang Hye-Won,Udayanga Dhanushka,Kim Jae-IlORCID,Jeon You-JinORCID

Abstract

Air pollution is a process that mixes pollutants into the atmosphere, which is potentially harmful to humans and causes negative impacts on the surrounding environment (biotic and abiotic). The negative health effects associated with air pollution have been reported from both indoor and outdoor environments. Specifically, dust storms originating in Chinese and Mongolian desert areas introduce significant amounts of particulate matter (PM) to the Korean atmosphere. Previously, several studies reported that urban PM (UPM) is a potential agent that causes inflammation in the lungs by altering multiple signal transduction pathways; therefore, screening and identification of anti-inflammatory compounds against UPM-induced inflammation is an urgent requirement. In the present study, we attempted to study the anti-inflammatory properties of 3-Hydroxy-5,6-epoxy-β-ionone (HEBI), a pure compound isolated from invasive brown seaweed, Sargassum horneri (brown edible seaweed), against UPM-stimulated lung macrophages (MH-S). Anti-inflammatory parameters of HEBI were evaluated using Western blots, ELISA, RT-qPCR, and MTT assays. According to the results, HEBI at concentrations between 31.3 and 125 µg/mL reduced UPM-induced NO, PGE2, and pro-inflammatory cytokine production via blocking the downstream signal transduction of NF-κB and MAPKs. Specifically, HEBI down-regulated the mRNA expression levels of Toll-like receptors 2 and 4, which are well-known NF-κB and MAPKs stimulators. Taken together, HEBI is a potential candidate to develop functional foods and active ingredients in cosmeceuticals because of its profound effects against UPM-induced inflammation in MH-S macrophages.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3