Abstract
Erecting underground structures in regions with unidentified weak layers, cavities, and faults is highly dangerous and potentially disastrous. An efficient and accurate near-surface exploration method is thus of great significance for guiding construction. In near-surface detection, imaging methods suffer from artifacts that the complex structure caused and a lack of efficiency. In order to realize a rapid, accurate, robust near-surface seismic imaging, a minimum variance spatial smoothing (MVSS) beamforming method is proposed for the seismic detection and imaging of underground geological structures under a homogeneous assumption. Algorithms such as minimum variance (MV) and spatial smoothing (SS), the coherence factor (CF) matrix, and the diagonal loading (DL) methods were used to improve imaging quality. Furthermore, it was found that a signal advance correction helped improve the focusing effect in near-surface situations. The feasibility and imaging quality of MVSS beamforming are verified in cave models, layer models, and cave-layer models by numerical simulations, confirming that the MVSS beamforming method can be adapted for seismic imaging. The performance of MVSS beamforming is evaluated in the comparison with Kirchhoff migration, the DAS beamforming method, and reverse time migration. MVSS beamforming has a high computational efficiency and a higher imaging resolution. MVSS beamforming also significantly suppresses the unnecessary components in seismic signals such as S-waves, surface waves, and white noise. Moreover, compared with basic delay and sum (DAS) beamforming, MVSS beamforming has a higher vertical resolution and adaptively suppresses interferences. The results show that the MVSS beamforming imaging method might be helpful for detecting near-surface underground structures and for guiding engineering construction.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference34 articles.
1. Risk assessment of water inrush in karst tunnels and software development
2. Risk Evaluation System for the Impacts of a Concealed Karst Cave on Tunnel Construction;Xue;Mod. Tunn. Technol.,2017
3. Current Status and Strategic Planning of Sinkhole Collapses in China;Lei,2015
4. A review on natural and human-induced geohazards and impacts in karst
5. A View on Application and Development of Engineering Geophysical Prospecting and Testing in City;Li;Chin. J. Eng. Geophys.,2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献