Are Mechanical Vibrations an Effective Alternative to Accelerate Orthodontic Tooth Movement in Humans? A Systematic Review

Author:

García Vega María FernandaORCID,López Pérez-Franco Laura Mónica,Dib Kanán Alejandro,Román Méndez Cristian Dionisio,Soto Sainz Jesús Eduardo,Reyes Cervantes Eric,Cerda-Cristerna Bernardino Isaac,Salas Orozco Marco FelipeORCID,Casillas Santana Miguel AngelORCID

Abstract

The objective of this article was to conduct a systematic review of the literature to contrast the existing evidence on the effect of mechanical vibrations, either high or low frequency, as an alternative to accelerate orthodontic tooth movement in humans. A literature search from 2010 to June 2021 was conducted in the electronic databases: PubMed, NCBI, Google Scholar, EBSCO, Cochrane, and Ovid, using the eligibility criteria to identify the studies. Only randomized clinical trials (RCT) were included. The certainty of the evidence was assessed using the GRADE tool and the risk of bias (RoB) in individual studies was evaluated according to the Cochrane bias risk tool. Fifteen RTCs were included for final review. Overall, the RoB was classified as low (3), moderate (5), and high (7). Three articles with low RoB, four with moderate RoB, and four with high RoB found no significant effect in the use of vibrations on orthodontic movement. Only four articles, three of them with high RoB and one with moderate RoB, found that mechanical vibrations are effective at accelerating orthodontic tooth movement. The results seemed to indicate that there is no evidence that vibratory stimuli can increase the rate of dental movement or reduce neither the time of dental alignment nor canine retraction during orthodontic treatment. It is important to note that a greater number of high-quality randomized controlled trials are urgently needed.

Funder

Benemérita Universidad Autónoma de Puebla

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3