Abstract
Presently, due to the establishment of a sensor network, residual buildings in urban areas are being converted into smart buildings. Many sensors are deployed in various buildings to perform different functions, such as water quality monitoring and temperature monitoring. However, the major concern faced in smart building Wireless Sensor Networks (WSNs) is energy depletion and security threats. Many researchers have attempted to solve these issues by various authors in different applications of WSNs. However, limited research has been conducted on smart buildings. Thus, the present research is focused on designing an energy-efficient and secure routing protocol for smart building WSNs. The process in the proposed framework is carried out in two stages. The first stage is the design of the optimal routing protocol based on the grid-clustering approach. In the grid-based model, a grid organizer was selected based on the sailfish optimization algorithm. Subsequently, a fuzzy expert system is used to select the relay node to reach the shortest path for data transmission. The second stage involves designing a trust model for secure data transmission using the two-fish algorithm. A simulation study of the proposed framework was conducted to evaluate its performance. Some metrics, such as the packet delivery ratio, end-end delay, and average residual energy, were calculated for the proposed model. The average residual energy for the proposed framework was 96%, which demonstrates the effectiveness of the proposed routing design.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献