Results of the “GER-e-TEC” Experiment Involving the Use of an Automated Platform to Detect the Exacerbation of Geriatric Syndromes

Author:

Zulfiqar Abrar-AhmadORCID,Vaudelle Orianne,Hajjam Mohamed,Geny Bernard,Talha SamyORCID,Letourneau Dominique,Hajjam Jawad,Erve Sylvie,Hajjam El Hassani AmirORCID,Andrès EmmanuelORCID

Abstract

Introduction: Telemedicine is believed to be helpful in managing patients suffering from chronic diseases, in particular elderly patients with numerous accompanying conditions. This was the basis for the “GERIATRICS and e-Technology (GER-e-TEC) study”, which was an experiment involving the use of the smart MyPredi™ e-platform to automatically detect the exacerbation of geriatric syndromes. Methods: The MyPredi™ platform is connected to a medical analysis system that receives physiological data from medical sensors in real time and analyzes this data to generate (when necessary) alerts. These alerts are issued in the event that the health of a patient deteriorates due to an exacerbation of their chronic diseases. An experiment was conducted between 24 September 2019 and 24 November 2019 to test this alert system. During this time, the platform was used on patients being monitored in an internal medicine unit at the University Hospital of Strasbourg. The alerts were compiled and analyzed in terms of sensitivity, specificity, and positive and negative predictive values with respect to clinical data. The results of the experiment are provided below. Results: A total of 36 patients were monitored remotely, 21 of whom were male. The mean age of the patients was 81.4 years. The patients used the telemedicine solution for an average of 22.1 days. The telemedicine solution took a total of 147,703 measurements while monitoring the geriatric risks of the entire patient group. An average of 226 measurements were taken per patient per day. The telemedicine solution generated a total of 1611 alerts while assessing the geriatric risks of the entire patient group. For each geriatric risk, an average of 45 alerts were emitted per patient, with 16 of these alerts classified as “low”, 12 classified as “medium”, and 20 classified as “critical”. In terms of sensitivity, the results were 100% for all geriatric risks and extremely satisfactory in terms of positive and negative predictive values. In terms of survival analysis, the number of alerts had an impact on the duration of hospitalization due to decompensated heart failure, a deterioration in the general condition, and other reasons. Conclusion: The MyPredi™ telemedicine system allows the generation of automatic, non-intrusive alerts when the health of a patient deteriorates due to risks associated with geriatric syndromes.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3