Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery

Author:

Lu Jingyue1,Wang Xuhua1,Cao Yunhe2,Zhang Lei3

Affiliation:

1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China

2. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

3. School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Forward-looking multi-channel synthetic aperture radar (FLMC-SAR) can realize two-dimension image formation in monostatic mode. This system must face the problem of left–right Doppler ambiguity. In the traditional methods, the spatial degrees of freedom of the FLMC-SAR system is expected to achieve Doppler ambiguity resolving by beamforming approaches. However, the influence of array error on beamforming cannot be ignored. In practice, the array error will lead to the mismatch of the space–time characteristic, which will reduce the performance of the Doppler ambiguity resolving method based on beamforming. This paper proposes a sparsity-based joint array calibration and ambiguity resolving method to enhance the robustness of FLMC-SAR imagery. For the FLMC-SAR system, the space–time characteristic of targets is first analyzed, based on which the observation model of FLMC-SAR Doppler ambiguity combined with array error is derived. Then, the Doppler ambiguity resolving and array error estimation are transformed into a sparse recovery problem. A modified quasi-Newton method is proposed to realize the array error estimation and Doppler ambiguity resolving of all targets in the local area. Finally, the results of the simulation and the real-data experiments verify that the proposed method can achieve FLMC-SAR Doppler ambiguity resolving and imaging.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3