Construction of an Integrated Drought Monitoring Model Based on Deep Learning Algorithms

Author:

Zhang Yonghong1ORCID,Xie Donglin1ORCID,Tian Wei2ORCID,Zhao Huajun1,Geng Sutong1,Lu Huanyu1,Ma Guangyi3,Huang Jie1,Choy Lim Kam Sian Kenny Thiam4

Affiliation:

1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi 214100, China

Abstract

Drought is one of the major global natural disasters, and appropriate monitoring systems are essential to reveal drought trends. In this regard, deep learning is a very promising approach for characterizing the non-linear nature of drought factors. We used multi-source remote sensing data such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Climate Hazards Group Infrared Precipitation with Station (CHIRPS) data to integrate drought impact factors such as precipitation, vegetation, temperature, and soil moisture. The application of convolutional long short-term memory (ConvLSTM) to construct an integrated drought monitoring model was proposed and tested, using the Xinjiang Uygur Autonomous Region as an example. To better compare the monitoring performance of ConvLSTM models, three other classical deep learning models and three classical machine learning models were also used for comparison. The results show that the composite drought index (CDI) output by the ConvLSTM model had a consistent high correlation with the drought rating of the multi-scale standardized precipitation evapotranspiration index (SPEI). The correlation coefficients between the CDI and the multi-scale standardized precipitation index (SPI) were all above 0.5 (p < 0.01), which was highly significant, and the correlation coefficient between CDI-1 and the monthly soil relative humidity at a 10 cm depth was above 0.45 (p < 0.01), which was well correlated. In addition, the spatial distribution of the CDI-6 simulated by the model was highly correlated with the degree of drought expressed by the SPEI-6 observations at the stations. This study provides a new approach for integrated regional drought monitoring.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fengyun Application Pioneering Project

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3