Use of Geostatistics for Multi-Scale Spatial Modeling of Xylella fastidiosa subsp. pauca (Xfp) Infection with Unmanned Aerial Vehicle Image

Author:

Belmonte Antonella1ORCID,Gadaleta Giovanni2,Castrignanò Annamaria3ORCID

Affiliation:

1. Institute for Electromagnetic Sensing of the Environment, National Research Council (CNR-IREA), Via Amendola, 122/D, 70126 Bari, Italy

2. Independent Researcher, Via Carr. Lamaveta, 63/F, 76011 Bisceglie (BT), Italy

3. Department of Engineering and Geology (InGeo), Gabriele D’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy

Abstract

In recent years, the use of Unmanned Aerial Vehicles (UAVs) has been spreading widely, as in plant pest control. The collection of huge amounts of spatial data raises various issues including that of scale. Data from UAVs generally explore multiple scales, so the problem arises in determining which one(s) may be relevant for a given application. The objective of this work was to investigate the potential of UAV images in the fight against the Xylella pest for olive trees. The data were a multiband UAV image collected on one date in an olive grove affected by Xylella. A multivariate geostatistics approach was applied, consisting firstly of estimating the linear coregionalization model to detect the scales from the data; and secondly, of using multiple factor kriging to extract the sets of scale-dependent regionalized factors. One factor was retained for each of the two selected scales. The short-range factor could be used in controlling the bacterium infection while the longer-range factor could be used in partitioning the field into three management zones. The work has shown the UAV data potential in Xylella control, but many problems still need to be solved for the automatic detection of infected plants in the early stages.

Funder

Apulia Region

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3